% "Filter design" lecture notes (EE364) by S. Boyd % (figures are generated) % % Designs a frequency-domain and time-domain FIR equalizer for % a single-input single-output (SISO) channel. % % Frequency-domain equalization uses a Chebychev criteria and % is specified in terms of frequency response functions. % It is a convex problem (which can be formulated as an SOCP): % % minimize max |G(w)H(w) - G_des(w)| for w in [0,pi] % % where H is the frequency response function and our variable % is the filter impulse response h. Function G is the unequalized % frequency response and G_des is the desired freq response. % % Time-domain equalization immediately designs the impulse % response function by specifying the problem in time (it's an LP): % % minimize max_{t neq D} |g_tilde(t)| % s.t. g_tilde(D) = 1 % % where g_tilde is the impulse response of equalized system, % and D is the delay of the system. % % Written for CVX by Almir Mutapcic 02/02/06 %******************************************************************** % problem specs %******************************************************************** % sample channel with impulse response g g =.5*[ 0.6526; 0.2157; -0.2639; 1.8024; -0.6430; ... 0.1096; -0.7190; 0.4206; -0.0193; 0.6603;]; % problem parameters n = 30; % filter order D = 10; % overall delay %******************************************************************** % frequency domain equalization %******************************************************************** % number of freq samples (rule-of-thumb) m = 15*(length(g) + n); w = linspace(0,pi,m)'; G = exp( -j*kron(w,[0:length(g)-1]) )*g; A = exp( -j*kron(w,[0:n-1]) ); % desired frequency response is a pure delay (equalized channel) Gdes = exp(-j*D*w); % formulate and solve the Chebyshev design problem cvx_begin variable hf(n,1) minimize( max( abs( G.*(A*hf) - Gdes ) ) ) cvx_end % check if problem was successfully solved disp(['Frequency equalization problem is ' cvx_status]) if ~strfind(cvx_status,'Solved') return end %******************************************************************** % time-domain equalization %******************************************************************** % define the convolution matrix Tconv = toeplitz([g; zeros(n-1,1)],[g(1) zeros(1,n-1)]); % create array of all times without t=D times_not_D = [1:D D+2:size(Tconv,1)]; % formulate and solve the time equalization problem cvx_begin variable t variable ht(n,1) minimize( max( abs( Tconv(times_not_D,:)*ht ) ) ) subject to Tconv(D+1,:)*ht == 1; cvx_end % check if problem was successfully solved if ~strfind(cvx_status,'Solved') disp(['Frequency equalization problem is ' cvx_status]) return end %******************************************************************** % equalizer plots %******************************************************************** % plot g figure(1) plot([0:length(g)-1],g,'o',[0:length(g)-1],g,'b:') xlabel('t') ylabel('g(t)') figure(2) H = exp(-j*kron(w,[0:length(g)-1]))*g; % magnitude subplot(2,1,1); plot(w,20*log10(abs(H))) axis([0,pi,-20,20]) xlabel('w') ylabel('mag G(w) in dB') % phase subplot(2,1,2) plot(w,angle(H)) axis([0,pi,-pi,pi]) xlabel('w') ylabel('phase G(w)') % freq equalizer figure(3) plot([0:n-1],hf,'o',[0:n-1],hf,'b:') xlabel('t') ylabel('h(t)') % plot g_tilde figure(4) gt=conv(g,hf); plot([1:length(gt)]-1,gt,'o',[1:length(gt)]-1,gt,'b:') xlabel('t') ylabel('g tilde(t)') axis([0,length(gt)-1,-.2 1.2]) figure(5) H = exp(-j*kron(w,[0:length(gt)-1]))*gt; % amplitude subplot(2,1,1) plot(w,20*log10(abs(H))) axis([0,pi,-20,20]) xlabel('w') ylabel('mag G tilde(w) in dB') % phase subplot(2,1,2) plot(w,angle(H)) axis([0,pi,-pi,pi]) xlabel('w') ylabel('phase G tilde(w)') % time equalizer figure(6) plot([0:n-1],ht,'o',[0:n-1],ht,'b:') xlabel('t') ylabel('h(t)') % plot g_tilde figure(7) gt=conv(g,ht); plot([1:length(gt)]-1,gt,'o',[1:length(gt)]-1,gt,'b:') xlabel('t') ylabel('g tilde(t)') figure(8) H = exp(-j*kron(w,[0:length(gt)-1]))*gt; % magnitude subplot(2,1,1) plot(w,20*log10(abs(H))) axis([0,pi,-20,20]) xlabel('w') ylabel('mag G tilde(w) in dB') % phase subplot(2,1,2) plot(w,angle(H)) axis([0,pi,-pi,pi]) xlabel('w') ylabel('phase G tilde(w)')
Monday, August 16, 2010
Load disqus comments
Subscribe to:
Post Comments (Atom)
Popular Posts
-
This circuit Tone Control Mono, 2 Transister : C945 = 2 part. Supply Volt min 12V Easy to build, PCB small. Circuit 2 Transister tone cont...
-
Circuit Pre MIC (microphone preamplifier) 2 CH by IC NE5532 or LF353 PCB Pre MIC (microphone preamplifier) 2 CH by IC NE5532 or LF353
-
Circuit Pre MIC (microphone preamplifier) 3 CH by IC LM348 PCB Pre MIC (microphone preamplifier) 3 CH by IC LM348
-
This circuit Tone Control Mono, 4 Transister : C945 = 5 part. Supply Volt min 12V 80ma. Easy to build, PCB small. circuit 5 Transister (C9...
-
This circuit Tone Control Stereo, 2 Transister : C945 = 2 part. Supply Volt min 12V Easy to build, PCB small. Circuit 2 Transister (C945) ...
-
This circuit Dynamic Microphone Preamp,Pre MIC 3 Transister mono. By Transister Part C945= 3 part.(TR1-TR3) OR C828 OR C458 Supply Volt 12V ...
-
This circuit Dynamic Microphone Preamp,Pre MIC 3 Transister mono. By Transister Part C945= 3 part.(TR1-TR3) OR C828 OR C458 Supply Volt 12V ...
-
circuit TDA2020 power amp 80W hi-fi For this application the maximum value of V1 in no-load condition is +/- 45V
-
Circuit diagram 500mW FM PLL transmitter 88-108MHz using LMX3206 – PIC16F870 Circuit diagram 500mW FM PLL transmitter 88-108MHz 500mW PLL FM...
Labels
- 1.5v LED FLASHER
- 1.5v to 9v INVERTER
- 100W up
- 110 dB Beeper
- 12v RELAY ON 6V SUPPLY
- 12v TRICKLE CHARGER
- 12v zener diode
- 2 Line Mixer
- 2.4 Ghz. Transceiver
- 2N3055 Amp
- 2N39xx
- 2SA1015
- 2SA10xx
- 2SC1815
- 2sc2625
- 2SC3320
- 2SC5080
- 2SC5200
- 2SC5411
- 2SC5926
- 2SC6090LS
- 2sc945
- 2SD1555
- 2SD1583-Z
- 2sd2498
- 2sd2499
- 2SD313
- 2SD880
- 3 Tone Gong
- 3V Sweeping Siren Alarm
- 3V Tube Amplifier Schematic
- 4 channels mixer
- 4-Way Intercom
- 44xx transistor
- 55 timer circuit.
- 555 timer
- 555 timer circuit
- 5V power supply
- 5v REGULATED SUPPLY FROM 3V
- 6 Headphone Splitter Schematic
- 6 MILLION GAIN
- 7400 series
- Adjustable power supply
- album electronic
- AM FM Antenna Booster
- amp mosfet
- amp STK
- amplificador operacional
- amplifier
- amplifier stereo yamaha
- amplifiers tube
- antenna
- Antenna schema Circuit
- audio
- audio amplifier
- Audio line driver
- Audio Subsystems
- Automatic cooler fan for amplifiers
- BATTERY CHARGER SCHEMATIC
- BC107A PINOUT
- BENCH POWER SUPPLY
- BlackBerry
- Broadband Colpitts VCO for TV Tuner
- car
- car amplifier
- charger
- circuit diagrams
- Circuit Guitar Tabs
- circuit long wire
- class A amp
- class AB amp
- class d audio amplifier
- COLPITTS OSCILLATOR
- COMPUTER
- CONSTANT CURRENT SOURCE
- control
- control electronic
- Control Kit tool
- Crossover cable pinout
- crystal radio parts
- DANCING FLOWER
- datasheet
- datasheet microcontroller
- datasheet transistor
- db9 pin configuration
- diagram
- Digital Parametric
- Digital Volume Control
- diode lights
- Driver Circuit
- electric power Schema
- Electrical Schematic Diagrams
- ELECTRONIC
- electronic cigarette
- Electronic Circuit
- electronic frontier 1
- electronic guitar
- electronic meter
- electronic music
- electronic part
- electronic pet door
- electronic speed meter
- Electronics
- emotional electronic
- Ethernet
- flasher
- fm modulator circuit
- fm radio transmitter
- FM receiver
- fm transmitter
- fm transmitter circuit
- GADGET
- Generator
- gigabyte motherboard
- gmrs two way radio
- Graphic Equaliser
- GRE
- Ground Plane Antenna
- Guitar Amplifier
- HARTLEY OSCILLATOR
- headphone amplifier
- home made speaker transformer
- How to Use a FM Transmitter to Listen to Internet Radio
- ic pinout
- IELTS
- ink watch electronic
- insect repellant
- instrument electronic
- Intercom Circuit
- internet
- inverter circuits
- Irene Hervey Pencil Crystal Radio
- KIT electronic1
- Laptop Speakers
- lcd
- LCD TV REMOTE CONTROL
- Lcd Tv Schematic Diagram
- LED DETECTS LIGHT
- LED Flasher
- LED FLASHER WITH ONE TRANSISTOR
- LIE DETECTOR
- light
- link
- links
- LM555
- MAKING A ZENER DIODE
- Metal Halide Electronic Ballast
- Microcontroller
- mini amplifier
- mixer schematic
- mobile fm transmitter
- motor control circuits
- motorola 2 way radio
- myself
- Negative Power Supply
- news
- NEWS Technology
- normal amp
- ON - OFF VIA MOMENTARY PUSH-BUTTONS
- oscillator
- otl amp
- Penguat Microphone
- Positive Voltage Regulator
- Power Amplifier
- Power MOSFET
- power supply schematic
- Pre Amp
- Pre MIC
- Pre tone
- preampmic microphone
- Printed Circuit
- Printer
- Printer Port Wireless Detector
- Privacy Policy
- radio
- radio schematics
- Radio-RF-Wireless
- Rangkaian delay speaker
- Rangkaian Pengusir serangga
- Reading Recommendations
- refurbished mp3 player
- regulator zener
- Relay and delay
- resistor calculator
- review
- Review Mosfet Amp
- rf amp
- rf circuit
- rg6 cable
- schematic diagram motherboard
- schematic diagram voltage regulator
- schematic tv aiwa
- schematic tv Sharp
- SECOND SIMPLEST CIRCUIT
- security
- sensor
- service mode tv
- SIGNAL INJECTOR
- silicon
- Simple Component
- SIREN
- siren circuit
- skdxxxxxxx
- slaxxxx
- smxxxx
- snxxxxxx
- stereo amplifier
- Stereo Power Amplifier
- stk datatsheet
- str datasheet
- SUPER EAR
- tda audio amplifier
- terminal
- tft lcd
- TICKING BOMB
- Timer
- Tips and Tricks
- tl431
- TOEFL
- TOUCH SWITCH
- Transceiver Nodules
- transistor
- Transistor Pinouts
- TRANSISTOR TESTER - 1
- TRANSISTOR TESTER - 2
- Transistors
- transit electronic
- transmitters
- triac circuits
- tv transmitter
- two way radio batteries Motorola
- UHF Antenna Booster
- un
- Universal Remote Control
- usb pinout
- use
- User Manual
- Variable switching power supply
- vga pinout
- VGA to TV Converter Circuit
- video
- vodapone
- voltage regulator
- Waterproof MP3 Player
- WHITE LINE FOLLOWER
- wireless
- Wireless Headphone System Schematic
- wireline electronic
- WORLDS SIMPLEST CIRCUIT
- yamaha
- Yamaha MFC06 Schematic
- Yamaha MPC1
- Yamaha T50
- yamaha tyros 3
Powered by Blogger.
0 comments